
A Modular Approach for Reusing Formalisms
in Verification Tools of Concurrent Systems

Étienne André1, Benôıt Barbot2, Clément Démoulins3, Lom Messan Hillah4,
Francis Hulin-Hubard2, Fabrice Kordon4, Alban Linard2, and Laure Petrucci1

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430,
Villetaneuse, France

2 LSV, CNRS, INRIA & ENS Cachan, France
3 EPITA Research and Development Laboratory (LRDE), France

4 LIP6, CNRS UMR 7606, Université P. & M. Curie and Université P. Ouest, France

Abstract. Over the past two decades, numerous verification tools have
been successfully used for verifying complex concurrent systems, mod-
elled using various formalisms. However, it is still hard to coordinate
these tools since they rely on such a large number of formalisms. Having
a proper syntactical mechanism to interrelate them through variability
would increase the capability of effective integrated formal methods. In
this paper, we propose a modular approach for defining new formalisms
by reusing existing ones and adding new features and/or constraints.
Our approach relies on standard XML technologies; their use provides
the capability of rapidly and automatically obtaining tools for represent-
ing and validating models. It thus enables fast iterations in developing
and testing complex formalisms. As a case study, we applied our modular
definition approach on families of Petri nets and timed automata.

Keywords: Formal methods, Model Driven Engineering, Interoperability, Re-
usability, Concurrent Systems, Model Checking

1 Introduction

Research teams have built over the past two decades numerous verification tools
that have successfully been applied to case studies. Formal models used by these
tools are described by formalisms. We call formalism a metamodel for a formal
notation. A formalism describes the entities to be found in the notation but it
also associates these with a behavioural semantics.

In this work, we focus on formal notations that are all dedicated to the
description of distributed and concurrent systems behaviour. Hence, their op-
erational semantics (i.e. how they can be executed) must be mathematically
founded to enable automated reasoning techniques such as model checking. An-
other characteristic of these notations is to be graph-based. This encompasses
(but is not limited to) automata, Petri nets and their variants.

1



Each of these numerous tools handles its own set of formalisms, in its own set
of syntactic formats, which makes it hard to harness their verification power into
integrated platforms. Some attempts have however been successful in integrating
various model checking tools into a single platform. One notable instance is the
CPN-AMI platform [10], used worldwide since the 1990’s.

As part of the MeFoSyLoMa5 community, we have had a long tradition of
maintaining this platform. The continuous maintenance has become very costly
and questionable recently, as new tools requirements in terms of new formalisms
and interoperability dramatically increased the time and effort required to build
adapters and wrappers for their integration. Moreover, the local syntax of CPN-
AMI could no longer cope with the constructs in the new formalisms handled by
the new tools. This is especially the case for the compositional and hierarchical
aspects. Therefore, its extension in its current form turned out not to be a viable
option.

Contribution This context led us to start the development of a new, flexible and
extensible syntactic framework for the integration of new formalisms. The sup-
porting format is now XML-based, more specifically on the RELAX-NG stan-
dard [14]. We designed the new open format with extensibility in mind, to allow
quick and easy definitions of new formalisms, by reusing existing constructs.

A major benefit of this approach is to provide the capability to rapidly and
automatically obtain tools for representing and validating models. It thus also
reduces the engineering effort to integrate new tools, as libraries to handle models
of their formalisms are automatically generated.

We describe in this paper a modular approach for reusing syntactic definitions
of formalisms, such as Petri nets and automata, in verification tools. We also
report its successful implementation using XML technologies. This approach is
implemented in a distributed and fully open platform, CosyVerif [3], making it
possible for any research team to set up local tools in a server on their premises,
and automatically register the provided services in the cloud of CosyVerif . The
maintenance effort of several days required for CPN-AMI has now decreased
to less than half a day for integrating formalisms and tools in CosyVerif . From
the user point of the view, the use of any tool is greatly eased thanks to a
user-intuitive graphical client.

Outline Section 2 presents an overview of current techniques in modelling the
abstract syntax of formal notations. With lessons learned from previous expe-
riences, Section 3 describes our solution and details its implementation using
standard XML-based technologies. An application to Petri nets and automata
shows in Section 4 how we leveraged the combined use of these technologies
to build an extensible and incremental architecture of interrelated formalisms.
We also identify good practices for the definition and the reuse of formalisms.
Section 5 presents the integration of our approach into the distributed platform
CosyVerif . We identify future directions of research in Section 6.

5 “Méthodes formelles pour les systèmes logiciels et matériels” (formal methods for
software and hardware systems), see http://www.mefosyloma.fr

2



2 Related Work

Generally, tools work on models typed after a formalism. Tools taking as input
the same formalism usually have a different syntax. For example, consider the
case of timed automata [1]: among a few examples of tools taking as input
(extensions of) timed automata – HyTech [11], Imitator [2], PAT [21] and
Uppaal [20] – all have a very different input syntax. Manually translating a
model from a given syntax into another one is cumbersome and error-prone; an
automated translation can be performed, but must be defined for any pair of
tools sharing the same input formalism. Hence unifying formalisms definitions
is a necessary condition to an effective integration of heterogeneous tools.

Several approaches have attempted, with various degrees of success, to tackle
this challenge, using model-based techniques, and sometimes backed by existing
platforms.

2.1 Related Model-Based Approaches

A notable work using model-based techniques is the Petri nets standard, ISO/IEC
15909. Part 2 of this standard [16] defines the Petri Net Markup Language
(PNML), a transfer format to foster interoperability among Petri net tools. The
standard defines the abstract syntax of PNML using UML class diagram nota-
tion. It defines the format concrete representation using RELAX-NG. PNML is
supported by PNML Framework [12], a generated Java library thanks to model-
driven engineering techniques, relying on the Eclipse Modeling Framework [22].

OMDoc6 is a markup format and data model for Open Mathematical Docu-
ments, defining an ontology language for mathematical knowledge. No platform
is associated with this work, but interfaces to existing tools (such as PVS or
Coq) are available.

MoWGLI7 builds on previous standards for the management and publica-
tion of mathematical documents (MathML, OpenMath, OMDoc). It relies on
XML-based technologies (XSLT, RDF, etc.). However, it seems that there is no
associated platform, and it looks like it is not maintained anymore.

2.2 Related Platforms

Several platforms have been designed over the past decade in order to achieve
similar goals. CASL (Common Algebraic Specification Language) is a general-
purpose specification language. A tool named HetCASL8 (Heterogeneous Tool
Set) has been proposed, that incorporates different theorem provers and different
specification languages, hence allowing the designer to handle heterogeneous
specifications. This approach is very much theorem prover oriented (including
connections with Isabelle, Maude, etc.). In contrast, CosyVerif is more general.

6 http://www.omdoc.org/
7 http://mowgli.cs.unibo.it/
8 http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/

CoFI/hets/

3



Diabelli [24] is a heterogeneous proof system, allowing one to perform theo-
rem proving with both diagrammatic and sentential formulae, and proof steps.
It is shipped as a standalone tool combining Isabelle and Speedith. The tool
does feature a graphical interface, but models are given in a textual form only.
We believe that this tool does not provide a high degree of flexibility (because it
requires translations), and apparently it does not work in the cloud, contrarily
to CosyVerif .

LTSmin [6] is a meta toolkit that supports different input language modules
(mCRL2, Promela, etc.) relying on labeled transition systems (LTS). LTSmin al-
lows LTS-based semantic exchanges of state space between different tools (based
on a Partitioned Next-State function). Furthermore, it allows the end user to
apply alternative verification algorithms to their native tool. However, the tool
only works with a LTS-based semantics, whereas we aim at considering a larger
set of formalisms.

Rich-model Toolkit9 is a standardisation of formal languages: it features com-
mon formats for systems, formulae, proofs and counterexamples. Contrarily to
our approach, it is SAT- and SMT-oriented, and algorithms seem to be built-in,
although it is hard to get a precise idea of the features, since this is a very recent
initiative.

StarExec10 is an initiative of the logic community to build a shared logic
solving infrastructure (SAT, SMT), to enable researchers to manage libraries,
provide solver execution on a large cluster, and facilitate translation between
logics. According to their system architecture specification, users interface with
the infrastructure via a Web application.

PAT [21] is a multi-formalisms platform based on modules. Each module
relies on its own formalism and domain of application (e.g. real-time systems,
probabilistic systems, network calculus, etc.), and must provide a semantics in
the form of LTS. Then, common algorithms (deadlock-checking, LTL-checking)
can be used for any of the modules, in addition to domain-specific algorithms.
It also features graphical facilities, a simulator, syntactical checkers, counterex-
ample exhibition, etc. Different from our approach, PAT is mainly LTS-based
(with additional integration of Markov Decision Processes and Timed Transi-
tion Systems), and formalisms are not related to each other, i.e. the modules are
independent.

2.3 Discussion

Our approach is similar to the ISO/IEC 15909 standard in terms of formalism
definition, and to StarExec, in terms of supporting platform. However there are
notable differences.

In ISO/IEC 15909, only most popular Petri nets types are considered: P/T
(places/transitions) nets, Symmetric and High-Level nets. Moreover, the identi-
fication of features variability to enable extensibility is an issue not completely

9 http://richmodels.epfl.ch/
10 http://www.starexec.org/starexec/public/about.jsp

4



solved due to a large family of types in the Petri net community. Many Petri
net types are ad-hoc variants of mainstream or exotic types, defined for specific
research purposes. So the right level of granularity among such a large family is
hard to figure out for defining a feature-proof extensible framework in the stan-
dard. We learnt from this case, and now consider the issue from a graph-based
approach: any graph-based formalism, including Petri nets and automata (our
case study in Section 4) should be adequately integrated in the framework.

The StarExec platform builds upon a grid engine (Oracle Grid Engine), where
solvers and benchmarks jobs are scheduled and dispatched over worker nodes,
in a typical grid computing fashion. CosyVerif is more cloud-based, since each
participant can set up his/her own tools server and automatically register the
services it provides in the cloud. Moreover CosyVerif does not mandate a Web-
based user interface for jobs submission. Users can interface with tools via ex-
isting front ends like Coloane (available from [23]), or via their own tools using
a provided library.

3 A Unified Representation

One of our main goals is to address the high variability in formalisms defi-
nitions. For example, since the original definition of timed automata [1], many
variants and extensions have been proposed, among which: timed automata with
stopwatches, parametric timed automata, interrupt timed automata, hybrid au-
tomata, etc. And each of these variants and extensions are themselves subject of
variants and extensions. The same applies to other families of formalisms such
as Petri nets.

Our model-based solution mainly and directly relies on XML technologies.
We use XML as it provides a common, flexible, and very expressive syntax. We
decided not to start with a model-based high-level notation such as UML for
formalism definition, to keep a lightweight approach, accessible to most tool de-
velopers, easy and fast to implement and test. Although verbose, XML can be
given a precise semantics and, as XML is both a mature and widely used tech-
nology, numerous tools and libraries for manipulating XML files are available.

We defined a two-layered XML-based modelling language, depicted in Fig. 1a:

1. FML (Formalism Markup Language), that specifies the concepts of any
graph-based formalism and their relationships;

2. GrML (Graph Markup Language), that specifies how a graph-based model,
complying with a given FML formalism, is structured.

A user-defined formalism must comply with FML constructs, as per the rela-
tionship between User Formalism and FML. A compliance procedure checks
the consistency of the user-defined formalism and its structure. Any User For-
malism, since it is graph-based, is structured by the GrML language.

GrML is a language that describes a specification in the context of a given for-
malism. In other words, the user domain specific language is defined using FML,
and the models of the domain must be structured as graphs in the associated

5



FML

User
Formalism

GrML

User
Model

Meta-Meta

Meta

Instance

is an instance of

complies with
is structured by

specialises

is an instance of

(a) User formalism and model must comply with
FML and GrML

Model

formalismUrl

Node

id
nodeType

Arc

id
arcType

Attribute
name
value

Ref

href

∗ ∗

1

1

∗

∗ ∗∗ ∗

∗

(b) GrML concepts

LeafAttribute
name
defaultValue: [0..1]
refType: [0..1]

ComplexAttribute

name
refType: [0..1]
combineChild:

interleave —
choice

[0..1] = interleave

NodeType

name

ArcType

name

Formalism
name
abstract:
[0..1] =false

xi:Include

href
Rule

Ref

href
minOccurs: [0..1] = 0
maxOccurs: [0..1] =
∞

Child

refName
minOccurs: [0..1] = 1
maxOccurs: [0..1] =
∞

∗ ∗

∗

∗

∗ ∗

1..∗

∗∗

(c) FML concepts

Fig. 1: FML and GrML concepts

formalism, this being enforced by GrML. By analogy with a model-based specifi-
cation language such as UML, FML defines the superstructure of our framework,
while GrML defines its infrastructure.

We introduce in more details FML and GrML in the next two subsections.

3.1 FML: Formalism Markup Language

The characteristic elements of formalisms to be used are described using the FML
language. FML caters for interdependent formalisms, allowing for hierarchical
definitions.

The metamodel of FML, illustrated in Fig. 1c, defines the concepts of a
graph-based formalism. When a Formalism is made abstract, it is intended to
serve as the basis (root or intermediate) for a hierarchy of concrete formalisms

6



of the same family. For instance, one may define the abstract graph of Petri nets
(places, transitions and arcs), and then build the concrete type place/transition
(P/T) net upon this primary definition. Note that “abstract: [0..1] = false”
denotes that the attribute “abstract” is optional (its cardinality is 0 or 1); the
notation “= false” indicates that its default value is false.

A Formalism is composed of NodeType, ArcType, LeafAttribute and
ComplexAttribute. A LeafAttribute may have a scalar value (attribute “de-
faultValue”), and may refer to a concrete NodeType or ArcType (attribute
“refType”).

A ComplexAttribute is a structured attribute, which also allows for hier-
archical composition of formalisms. In a Symmetric net for example, the marking
of a place, composed of tokens, would be defined as an expression denoting a
multiset of tuples where each token in a tuple may be a scalar value of a colour
domain, or an expression using built-in Symmetric net functions (e.g. successor,
predecessor, broadcast). This concept of tuple also exists in P/T nets, but refers
there to a simple integer. This gives an example of reuse of the same notion (i.e.
ComplexAttribute) with different definitions in different formalisms.

The hierarchy between formalism descriptions can be achieved by the rela-
tionship between NodeType, ArcType and Ref. Typically, in the Petri net
model of a hierarchical system, submodels may be attached to a place or a
transition.

Finally, reuse between formalisms to allow for compositional and incremental
definitions is achieved thanks to the relationship between Formalism and the
xi:Include construct. The latter represents the ability to use the XML XIn-
clude technology11 to import other formalisms. XInclude enables the inclusion
of one or several XML documents into another one. This mechanism allows for
defining new formalisms by simply composing one or several previously defined
formalisms, and only defining the new features, in order to facilitate modular-
ity. The grammar of FML (in RELAX-NG) is available on the CosyVerif Web
page12.

3.2 GrML: Graph Markup Language

The structure of a GrML model is described by the metamodel in Fig. 1b.
A Model is a graph typed by a user formalism (referred to by the attribute
“formalismUrl”). It consists of a set of Node and a set of Arc. The arcs connect
the nodes. A node in a GrML model is typed by its “nodeType”, declared in
the corresponding formalism. The same principle applies to an arc (typed by
its “arcType”). A Ref represents the link between two elements or between an
element and a model (the reference is provided by its “href” attribute). Any
referenced element must be identified by an “id” in the containing model file,

11 http://www.w3.org/TR/xinclude/
12 https://forge.cosyverif.org/projects/formalisms/repository/entry/trunk/

formalism.rng

7



and any referenced model is identified by the model file name. The reference
(“href”) value is an URI.

A user model (Fig. 1a) is thus contained in a GrML document, an XML file
describing a model and given in the form of an annotated graph. The model, its
arcs and nodes can contain attributes given in the form of a tree and must comply
with the associated FML description. The grammar of GrML (in RELAX-NG)
is available on the CosyVerif Web page13.

Finally note that verification tools implementing our approach can use GrML
as an abstract syntax, and hence implement translation from/to their concrete
syntax, or directly use GrML libraries.

3.3 Automated Compliance Checking

Our approach includes a mechanism for automatically checking the conformance
of a GrML model with respect to its corresponding user-defined FML formalism
and the FML language. It works as follows.

First, GrML and FML syntaxes are validated using RELAX-NG. Then,
the content of a GrML file is checked against the corresponding description of
its associated formalism. To do so, Schematron [15] rules are generated from
the XML description of the formalism. Schematron is a rule-based validation
language relying on XPATH14 idioms to query and validate co-occurrence con-
straints in an XML file. We chose Schematron since an XML grammar cannot
capture some particular constraints: for instance, “in a Petri net formalism, no
arc should connect two nodes of the same type” (i.e. only arcs between a place
and a transition – or vice versa – are allowed). Schematron is also used to per-
form consistency checks such as correspondence between the declaration of a
variable and its usage.

This automated compliance checking is implemented in a freely available
tool: GrML-Check15.

3.4 Ease of Implementation for Data Structures

Since our approach relies on standard XML technologies that are well developed,
we are able to easily generate the data structures representing the models, as
well as the read and write operations.

The XML Schema is generated using the trang16 utility from the RELAX-
NG description. Then, tools are run to generate the API for loading, storing,
and manipulating GrML models, in different programming languages:

– JAXB17 for Java;

13 https://forge.cosyverif.org/projects/formalisms/repository/entry/trunk/

model.rng
14 http://www.w3.org/TR/xpath20/
15 https://forge.cosyverif.org/projects/grml-check
16 http://www.thaiopensource.com/relaxng/trang.html
17 http://jaxb.java.net/

8



– Code Synthesis xsd18 for C++;
– and other languages that could be made available, such as Python.

This approach has one drawback: it only generates APIs for the generic GrML
models, not for a particular formalism. We have to write API generators to wrap
the GrML API with the notions defined in each formalism. The automation of
this work is currently being explored. It can be solved by writing only one gen-
erator per language, that takes a formalism as input and generates the wrapping
of the GrML API.

The performance of the libraries is usually very good, as they can load big
models very fastly within a reasonable amount of memory. For example, a JAXB-
generated parser for PNML P/T models can load a 336 MiB PNML file in 7.90
seconds, with 1 GiB of memory allocated to the Java Virtual Machine (using the
-Xmx option).

The next section instantiates this modular definition approach on a zoo of
formalisms made up of the families of (timed) automata and Petri nets.

4 Application to Automata and Petri Nets

We leveraged the flexibility, compositional and incremental reuse characteristics
of FML and GrML to build an architecture of interrelated formalisms, for Petri
nets and automata. Our goal here is to obtain an architecture structuring these
two families of graph-based formalisms.

4.1 Description

Our proposal is given in Fig. 2. In this proposal, formalisms can reuse exist-
ing formalisms: for example, Parametric Timed Automaton reuses the syntactic
features of Timed Automaton. Other formalisms can be defined as a restricted
version of an existing formalism: this is the case of Linear Hybrid Automaton

that reuses the concepts of Hybrid Automaton, but adds constraints. Abstract
formalisms as explained earlier, are meant to provide the bridge linking concrete
formalisms of the same family, structured in a hierarchical architecture.

In Fig. 2, the composition and incremental reuse takes place from top to
bottom. So, the core building blocks appear at the top of the figure, and each
formalism (or abstract formalism) in a layer is a potential building block for the
formalisms in the layer below19.

For example, we will create the formalism Timed Automaton in this section. It
is built upon Abstract Timed Automaton, which is itself built upon Automaton,
described below:

18 http://www.codesynthesis.com/products/xsd/
19 For the sake of readability and saving space, we sometimes depict different formalisms

at the same level, although one includes another one (see, e.g. Stopwatch Automaton

and Parametric Stopwatch Automaton).

9



Expressions and
Boolean expressions

Abstract
hybrid automaton

Abstract
timed automaton

abstract PN-
Modules

Abstract parametric
timed automaton

abstractPN-CoreAutomaton

Hierarchical
Place/Transition-Net

P/T Net

Hybrid
Automaton

Linear
Hybrid Automaton

Parametric
Timed Automaton

Timed
Automaton

Symmetric-Net
with-Bags

Symmetric-Net

Stochastic-Net

Stopwatch 
Automaton

Parametric Stopwatch 
Automaton

Fig. 2: An architecture of formalisms

<formalism name=”Automaton” xmlns=” ht tp : // c o s y v e r i f . org /ns/ formal ism”>
< l e a fA t t r i b u t e name=” i n i t i a l S t a t e ” />
< l e a fA t t r i b u t e name=” f i n a l S t a t e ” />
<complexAttr ibute name=”type” refType=” s t a t e ”>

<c h i l d refName=” i n i t i a l S t a t e ” minOccurs=”0” maxOccurs=”1”/>
<c h i l d refName=” f i n a l S t a t e ” minOccurs=”0” maxOccurs=”1”/>

</ complexAttr ibute>
< l e a fA t t r i b u t e name=”name” refType=” s t a t e ”/>
< l e a fA t t r i b u t e name=” l a b e l ” refType=” t r a n s i t i o n ”/>
<nodeType name=” s t a t e ”/>
<arcType name=” t r a n s i t i o n ”/>

</ formalism>

An automaton contains states (defined by the nodeType tag), and transitions
(defined by the arcType tag). States have two attributes, “name” and “type”
(defined by the leafAttribute and complexAttribute), where “type” is a combination
of optional “initialState” and “finalState”. Transitions have only a label.

Abstract Timed Automaton is defined above Automaton by:

<formalism abs t ra c t=” true ” name=”Abstract timed automaton”
xmlns=” ht tp : // c o s y v e r i f . org /ns/ formal ism”>

<x i : i n c l u d e hr e f=”automaton . fml ”/>
<x i : i n c l u d e hr e f=” ab s t r a c t e xp r e s s i o n . fml ”/>
<complexAttr ibute name=” de c l a r a t i on ” refType=”Abstract timed

automaton”>
<c h i l d refName=” c l o ck s ” minOccurs=”0” maxOccurs=”1”/>

</ complexAttr ibute>
<complexAttr ibute name=” c l o ck s ”>

<c h i l d refName=” c lock ” minOccurs=”0”/>
</ complexAttr ibute>
<complexAttr ibute name=” c lock ”>

<c h i l d refName=”name” maxOccurs=”1”/>
</ complexAttr ibute>
<complexAttr ibute name=”guard” refType=” t r a n s i t i o n ”>

<c h i l d refName=”boolExpr” maxOccurs=”1”/>
</ complexAttr ibute>
<complexAttr ibute name=”updates ” refType=” t r a n s i t i o n ”>

<c h i l d refName=”update” minOccurs=”0”/>
</ complexAttr ibute>
<complexAttr ibute name=”update”>

10



<c h i l d refName=”name” maxOccurs=”1”/>
<c h i l d refName=”expr ” maxOccurs=”1”/>

</ complexAttr ibute>
</ formalism>

This formalism includes the base Automaton formalism and another formalism
that describes Boolean and Integer expressions. It defines clocks on the automa-
ton and guards and updates of the clocks on the transitions.

This latter formalism instantiates the Abstract Timed Automaton as Timed
Automaton.

<formalism name=”Timed Automaton”
xmlns=” ht tp : // c o s y v e r i f . org /ns/ formal ism”>

<x i : i n c l u d e hr e f=” abstract t imed−automaton . fml ”/>
</ formalism>

Note that the Abstract Timed Automaton is useful to define others formalisms,
like Hybrid Automaton. Timed Automaton itself becomes a building block for
Parametric Timed Automaton.

Once the formalism has been defined, the developer can write models in
GrML and check them using the GrML-Check tool. He/she can also manipulate
models using the GrML library available in his programming language. In a
near future, developers will also be able to generate an API for their specific
formalisms and use it in their tools.

In this incremental definition approach, for two same concepts in two con-
secutive layers, the most recent one (in the layer below) subsumes (i.e. merges)
the previous one. The XInclude technology allows to specify how to combine
elements and attributes of the subsumed concept with those of the including
one. Multiple composition is allowed.

Note that, although in theory Petri nets and automata do not share much
syntax, we do not have two independent connected components in Fig. 2, as one
could expect. Instead, the hierarchy of automata (on the left) and the hierarchy
of Petri nets (on the right) share a common formalism, i.e. Expressions and

Boolean expressions. Furthermore, if time(d) Petri nets are to be defined,
they will certainly share some attributes with timed automaton (e.g. the defi-
nition of clocks), and hence both Abstract Time Petri Nets and Abstract

Timed Automaton may build upon a new abstract formalism, e.g. Abstract

timed systems. The same holds for the extension to the parametric case. This
shows the interest of reusability in our solution, and of the notion of abstract
formalisms.

All the formalisms defined in CosyVerif can be found on the CosyVerif Web
page20.

4.2 Discussion

Our aim is not only to describe formalisms, but also to ease the development
of new formalisms possibly using parts of existing ones. Thus formalisms we
use in this framework are not built independently of one another, but factor as

20 https://forge.cosyverif.org/projects/formalisms/repository/entry/trunk/

11



much as possible their common features, as the above application shows. Most
formalisms are extensions of other formalisms. Maintaining relations of hierarchy
or dependency is also an important issue both to navigate through the zoo of
formalisms and to ensure consistency in the long run.

4.3 Towards Good Practices

While working on this structured architecture of formalisms, we identified a good
practice for defining formalisms, based on abstract and concrete formalisms.
Abstract formalisms (depicted in Fig. 2 in dotted red) define the core of our
formalisms; they must be as organised (through inclusion) as possible. Each
abstract formalism can include other abstract formalisms, and add new features.
Concrete formalisms can include several abstract or concrete formalisms, but
should not add new features. They can however add constraints. Of course,
only concrete formalisms can be instantiated in a GrML model. This separation
between concrete and abstract formalisms is inspired by the object-orientation
paradigm.

Finally, an important issue to be addressed is to identify whether tools would
still be compatible in case the hierarchy of formalisms is subject to modifications.
We should find criteria to allow backward compatibility; in particular, modifi-
cations could be performed to the hierarchy, as long as the (abstract) syntax of
the formalism supported by the tool remains unchanged.

5 Integration into the CosyVerif Platform

This work has been implemented in the CosyVerif verification environment [3].
CosyVerif aims at gathering within a common interface various existing tools
for specification and verification. It has been designed in order to:

1. support different formalisms with the ability to easily create new ones;
2. provide a graphical interface for every formalism;
3. include verification tools called via the interface as Web services; in fact, the

provided graphical front end in the CosyVerif platform wraps such Web ser-
vices; any other client (third party product) able to wrap such Web services
can be used as well;

4. offer the possibility for a developer to integrate his/her own tool without
much effort, also allowing it to interact with the other tools.

5.1 Architecture

CosyVerif consists of two components:

– a distributed server (Alligator), which provides an integration framework
based on Web Services;

– a client (Coloane), which provides a graphical front-end.

12



Users may either install the server (containing all verification tools) as a
standalone binary, or only install the light client and connect to an existing
server.

CosyVerif relies on the use of GrML files describing models that comply with
FML describing formalisms. The Coloane client allows to graphically design a
model, which is automatically translated into a GrML file.

The CosyVerif platform is OS-independent and entirely open source (server,
client and verification tools). Alligator is published under the GNU Affero Gen-
eral Public License (AGPL) version 3. Coloane is published under the Eclipse
Public License (EPL) version 1.

5.2 Advantages

Among the advantages of CosyVerif is the easy use of the platform: the end
user can simply install the client, that will automatically connect to an existing
server. For the tool developer, integrating a tool into the platform first requires
the definition of a FML formalism (if it was not previously available), by reusing
portions of formalisms. Then, (s)he only needs to write a parser taking GrML
as input. Here again, much reuse can be performed: for formalisms reusing other
formalisms, parts of their parser can be reused here as well . The whole operation
usually requires less than half a day.

Finally, the platform is client-independent; although we provide Coloane,
any home-made client using a provided library or using appropriately the Web
service protocol can connect to an existing server as well and benefits from the
services provided by the tools integrated in CosyVerif .

5.3 Integrated Tools

Up to now, 8 tools (that support GrML input) are available in CosyVerif :

– COSMOS [5], a statistical model checker for Petri net with general distribution
against specification given as a linear hybrid automaton;

– Crocodile [7], a model checker for Symmetric nets with bags [9];
– Cunf [4], a toolset for carrying out unfolding-based verification of Petri nets

extended with read arcs;
– Imitator [2], a tool for synthesising timing parameters for networks of timed

automata augmented with stopwatches;
– ModGraph [19], a tool for the construction and analysis of modular state

spaces;
– ObsGraph [17], a BDD-based tool implementing a verification approach for

workflows using Symbolic Observation Graphs;
– PNXDD [13], a model checker for place/transition Petri nets based on hier-

archically structured decision diagrams.

More details on the tools can be found in the publications related to the
tools, as well as in [3]. The integration of other tools is still ongoing.

13



5.4 Banks of Formalisms and Models

Two major sets of FML formalisms are available so far: Petri nets and timed
automata (see Fig. 2). They can be downloaded from the CosyVerif repository.

Using the translation facilities offered by some tools to convert models given
in their native format to models in the GrML syntax, several lists of benchmarks
are now available in the GrML format, and have been grouped on the CosyVerif ’s
Web site [23] (in Downloads → Repository).

A first list of case studies of parametric timed automata comes from Imi-
tator [2]. These case studies concern hardware circuits (including original in-
dustrial case studies), communication protocols, scheduling problems, as well as
some classical case studies from the literature. A second list of benchmarks con-
sists of a large list of Petri nets models and their extensions (including coloured
Petri nets), coming from the model checking contests in 2011, 2012 and 2013
at the International Conference on Application and Theory of Petri Nets and
Concurrency [13, 18].

6 Conclusion and Perspectives

This paper proposes a mechanism to integrate heterogeneous formalisms and
associated tools, and enhance interoperability between tools, using a modular
formalisms definition approach. Our solution relies on the FML language for
describing formalisms, and the GrML language for describing models. An auto-
mated compliance check is performed between any GrML model and its corre-
sponding FML formalism. We aim at emphasising the reusability of formalisms as
much as possible, so as to ease the engineering of verification tools. Our approach
was implemented in the CosyVerif platform. A hierarchy of FML formalisms for
extensions of Petri nets and automata has been defined and implemented, and
several lists of benchmarks are available.

We give below some directions for future research.

6.1 Properties

The approach described in this paper allows the modular definition of for-
malisms. It can be pushed one step further to cover not only the models, but
also their properties and results of tools.

Researchers have defined properties for the models, for instance place bounds
or invariants for Petri nets. These properties can be either filled by the modeler
or computed by tools. Currently, the tools usually display the result but do not
make it easily available to other tools. Thus, it is difficult to reuse the results
of one tool into the computations of another tool. Such communication between
tools is interesting though. For instance, the place bounds of a Petri net can
be used by a model checker (especially those based on decision diagrams) to
improve their efficiency.

As we propose a way to define modular formalisms, we propose to provide
properties as formalism extensions in the future. It would benefit from an easy

14



integration with the current approach, while allowing better communication and
interaction between the tools. This important and much asked-for feature in the
model checking community was totally missing in most platforms.

6.2 Semantics

An additional challenge is the ability of composing models defined using different
formalisms (e.g. a Petri net with a finite state automaton). This requires semantic
information (in order to define, e.g. what kind of variable of a first formalism
corresponds to what kind of variable in a second formalism and hence be able to
synchronise them). Attaching some semantic information to the FML formalisms
is the subject of ongoing work.

Attaching more semantic information to FML formalisms will also make it
possible to automatically translate a model described using any FML formal-
ism into a model described using any other FML formalism. Of course, if these
formalisms are incompatible (e.g. a timed Petri net can in general not be trans-
lated into a finite state automaton), this must be detected. Such a work can
be related to the automated composition of logics, with automated feedback for
consistency [8].

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITA-
TOR 2.5: A tool for analyzing robustness in scheduling problems. In FM, volume
7436 of Lecture Notes in Computer Science, pages 33–36. Springer, 2012.

3. Étienne André, Lom-Messan Hillah, Francis Hulin-Hubard, Fabrice Kordon,
Yousra Lembachar, Alban Linard, and Laure Petrucci. CosyVerif: An open source
extensible verification environment. In ICECCS. IEEE Computer Society, 2013.
To appear.

4. Paolo Baldan, Alessandro Bruni, Andrea Corradini, Barbara König, César
Rodŕıguez, and Stefan Schwoon. Efficient unfolding of contextual Petri nets. The-
oretical Computer Science, 449:2–22, 2012.

5. Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and Nihal Pekergin.
HASL: An expressive language for statistical verification of stochastic models. In
VALUETOOLS, pages 306–315, 2011.

6. Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed and
symbolic reachability. In CAV, volume 6174 of Lecture Notes in Computer Science,
pages 354–359. Springer, 2010.

7. Maximilien Colange, Souheib Baarir, Fabrice Kordon, and Yann Thierry-Mieg.
Crocodile: A symbolic/symbolic tool for the analysis of symmetric nets with bags.
In ICATPN, volume 6709 of Lecture Notes in Computer Science, pages 338–347.
Springer, 2011.

8. Sébastien Ferré and Olivier Ridoux. Logic functors: A toolbox of com-
ponents for building customized and embeddable logics. Technical report,
INRIA, 2006. Available at http://www.irisa.fr/LIS/ferre/logfun/doc/

ResearchReportInria0000.pdf.

15



9. S. Haddad, F. Kordon, L. Petrucci, J-F. Pradat-Peyre, and N. Trèves. Efficient
state-based analysis by introducing bags in Petri net color domains. In ACC’09,
pages 5018–5025. Omnipress IEEE, 2009.

10. Alexandre Hamez, Lom-Messan Hillah, Fabrice Kordon, Alban Linard, Emmanuel
Paviot-Adet, Xavier Renault, and Yann Thierry-Mieg. New features in CPN-
AMI 3: Focusing on the analysis of complex distributed systems. In ACSD, pages
273–275. IEEE Computer Society, 2006.

11. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model
checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122,
1997.

12. Lom Messan Hillah, Fabrice Kordon, Laure Petrucci, and Nicolas Trèves. PNML
framework: An extendable reference implementation of the Petri net markup lan-
guage. In ICATPN, volume 6128 of Lecture Notes in Computer Science, pages
318–327. Springer, 2010.

13. S. Hong, F. Kordon, E. Paviot-Adet, and S. Evangelista. Computing a Hierarchical
Static order for Decision Diagram-Based Representation from P/T Nets. Trans-
actions on Petri Nets and Other Models of Concurrency (ToPNoC), V:121–140,
2012.

14. ISO/JTC1/SC34. ISO/IEC 19757-2:2008: Information Technology – Document
Schema Definition Language (DSDL) – Part 2: Regular-grammar-based validation
– RELAX NG. ISO/IEC, http://relaxng.org.

15. ISO/JTC1/SC34. ISO/IEC 19757-3:2006: Information Technology - Document
Schema Definition Languages (DSDL) - Part 3: Rule-based validation - Schema-
tron. ISO/IEC, http://schematron.com/.

16. ISO/JTC1/SC7/WG19. ISO/IEC 15909-2:2011. Systems and software engineering
– High-level Petri nets – Part 2: Transfer format, 2011.

17. Kais Klai and Hanen Ochi. Modular verification of inter-enterprise business pro-
cesses. In eKNOW, pages 155–161, 2012.

18. Fabrice Kordon, Alban Linard, Didier Buchs, Maximilien Colange, Sami Evan-
gelista, Lukasz Fronc, Lom-Messan Hillah, Niels Lohmann, Emmanuel Paviot-
Adet, Franck Pommereau, Christian Rohr, Yann Thierry-Mieg, Harro Wimmel,
and Karsten Wolf. Raw report on the model checking contest at Petri nets 2012,
2012. Technical report, CoRR.

19. Charles Lakos and Laure Petrucci. Modular analysis of systems composed of semi-
autonomous subsystems. In ACSD, pages 185–196. IEEE Computer Society, 2004.

20. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152,
1997.

21. Yang Liu, Jun Sun, and Jin Song Dong. PAT 3: An extensible architecture for
building multi-domain model checkers. In ISSRE, pages 190–199. IEEE, 2011.

22. Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. Eclipse Series. Addison-Wesley Professional, second
edition, 2008.

23. The CosyVerif group. CosyVerif Web page. http://www.cosyverif.org.
24. Matej Urbas and Mateja Jamnik. Diabelli: A heterogeneous proof system. In IJ-

CAR, volume 7364 of Lecture Notes in Computer Science, pages 559–566. Springer,
2012.

16


